## TRAPPIST-1 Activities Calculating TRAPPIST-1 Planet Densities

To calculate the average density of a sphere ( $\rho$ ), you simply divide the mass ( m ) of the sphere by it's volume (v).
$\rho=m / v$
If you have the radius of the sphere (r), then the volume is given by the formula:
$\mathrm{v}=(4 / 3) \pi \mathrm{r}^{3}$
For example, the mass of Earth is $5.972 \times 10^{24} \mathrm{~kg}$. To find the volume of Earth we use the formula $v=(4 / 3) \pi r^{3}$. Earth's radius is $6.371 \times 10^{6}$ meters. Therefore, volume $=(4 / 3)(3.14)$ $\left(6.371 \times 10^{6} \mathrm{~m}\right)^{3}=1.083 \times 10^{21} \mathrm{~m}^{3}$. Then to find the density we divide mass by volume $=5.972$ $\times 10^{24} \mathrm{~kg} / 1.083 \times 10^{21} \mathrm{~m}^{3}=5514 \mathrm{~kg} / \mathrm{m}^{3}=5.51 \mathrm{~g} / \mathrm{cm}^{3}$.

The density of water is $1 \mathrm{~g} / \mathrm{cm}^{3}$. Planets with a density of less than $1 \mathrm{~g} / \mathrm{cm}^{3}$ would float if dropped in a giant bathtub!

Use the table below to calculate the approximate densities for the 7 Earth-like worlds of the TRAPPIST-1 System.

| Planet | Radius | Mass | Density |
| :--- | :--- | :--- | :--- |
| TRAPPIST-1b | $6.94 \times 10^{6} \mathrm{~m}$ | $5.076 \times 10^{24} \mathrm{~kg}$ | - |
| TRAPPIST-1c | $6.75 \times 10^{6} \mathrm{~m}$ | $8.24 \times 10^{24} \mathrm{~kg}$ | - |
| TRAPPIST-1d | $4.90 \times 10^{6} \mathrm{~m}$ | $2.45 \times 10^{24} \mathrm{~kg}$ | - |
| TRAPPIST-1e | $5.86 \times 10^{6} \mathrm{~m}$ | $3.70 \times 10^{24} \mathrm{~kg}$ | - |
| TRAPPIST-1f | $6.63 \times 10^{6} \mathrm{~m}$ | $4.06 \times 10^{24} \mathrm{~kg}$ | - |
| TRAPPIST-1g | $7.20 \times 10^{6} \mathrm{~m}$ | $8.00 \times 10^{24} \mathrm{~kg}$ | - |

## TRAPPIST-1 System Travel Time

How long would it take to travel from Earth to the 7 potentially Earth-like worlds of the TRAPPIST- $\mathbf{1}$ System? We know that the TRAPPIST- 1 system is 39 light-years away from Earth. That means that if we could travel at the speed of light, it would take 39 years to get there. According to Einstein's theory of general relativity, nothing can travel faster than the speed of light. We currently have no spacecraft that can travel at the speed of light or anywhere close to it.

To calculate the travel time to the TRAPPIST system, you take the distance to TRAPPIST- 1 (39 light-years) and divide it by the distance your spacecraft covers in one year. Ensure that the number you are dividing has the same units as the number you are dividing by.

TRAPPIST-1 Distance $=39$ light-years $=229$ trillion miles $=369$ trillion kilometers
Travel Time $=$ Distance to TRAPPIST- $1 /$ distance spacecraft travels in 1 year
or:
Travel Time (in miles) $=$ 229,000,000,000,000 miles $/$ (vehicle speed in mph x 24 (hours) x 365 (days))

Travel Time (in kilometers) = 365,000,000,000,000 km / (vehicle speed in km/h x 24 (hours) x 365 (days))

| Spacecraft | Speed | Info |
| :--- | :--- | :--- |
| Car | $60 \mathrm{mph}(100 \mathrm{~km} / \mathrm{h})$ | Safe highway speed. |
| Spaceshuttle | $17,500 \mathrm{mph}(28,160 \mathrm{~km} / \mathrm{h})$ | Capable of carrying humans. |
| New Horizons Spacecraft | $32,000 \mathrm{mph}(52,000 \mathrm{~km} / \mathrm{h})$ | Fastest spacecraft ever launched. |
| Juno Spacecraft | $165,000 \mathrm{mph}(265,000 \mathrm{~km} / \mathrm{h})$ | Fastest ever speed achieved by a <br> spacecraft. |

Use the table above to calculate how long it would take to travel to TRAPPIST- 1 with today's transportation technology.

1. How many years would it take to travel by car to TRAPPIST-1?
2. How many years would it take in the Spaceshuttle to travel to TRAPPIST-1?
3. How many years would it take in the New Horizons spacecraft to travel to TRAPPIST-1?
4. How many years would it take in the Juno spacecraft to travel to TRAPPIST-1?
5. With today's technology, do you think it's practical to travel to TRAPPIST-1?

Answers: 1.436 million years, 2. 1.5 million years, $3.817,000$ years, 4.159 , ooo years, 5 . no

## How Much Would You Weigh on a TRAPPIST-1 Planet

You might be curious as to how much you would weigh on the other planets in the TRAPPIST- 1 system. Would you be gambolling on the surface like the astronauts do on the Moon or would you feel heavier on the surface?

We used Newton's gravitational law to calculate the ratio between Earth's surface gravity and that of the other planets in the TRAPPIST- 1 system. Multiply your weigh on Earth by each planet surface gravity ratio to find out how much you would weigh on each planet compared to Earth.

| Planet | Surface Gravity Ratio |
| :--- | :--- |
| Earth | 1.00 |
| TRAPPIST-1b | 0.72 |
| TRAPPIST-1c | 1.23 |
| TRAPPIST-1d | 0.69 |
| TRAPPIST-1e | 0.73 |
| TRAPPIST-1f | 0.63 |
| TRAPPIST-1g | 1.05 |

Answers: Will vary per student.

